On the Stability of Some Hierarchical Rank Structured Matrix Algorithms
نویسندگان
چکیده
In this paper, we investigate the numerical error propagation and provide systematic backward stability analysis for some hierarchical rank structured matrix algorithms. We prove the backward stability of various important hierarchically semiseparable (HSS) methods, such as HSS matrix-vector multiplications, HSS ULV linear system solutions, HSS linear least squares solutions, HSS inversions, and some variations. Concrete backward error bounds are given, including a structured backward error for the solution in terms of the structured factors. The error propagation factors only involve low-degree powers of the maximum off-diagonal numerical rank and the logarithm of the matrix size. Thus, as compared with the corresponding standard dense matrix algorithms, the HSS algorithms are not only faster, but also have much better stability. We also show that factorization-based HSS solutions are usually preferred, while inversion-based ones may suffer from numerical instability. The analysis builds a comprehensive framework for understanding the backward stability of hierarchical rank structured methods. The error propagation patterns also provide insights into the improvement of other types of structured solvers and the design of new stable hierarchical structured algorithms. Some numerical examples are included to support the studies.
منابع مشابه
Row Compression and Nested Product Decomposition of a Hierarchical Representation of a Quasiseparable Matrix
This research introduces a row compression and nested product decomposition of an n × n hierarchical representation of a rank structured matrix A, which extends the compression and nested product decomposition of a quasiseparable matrix. The hierarchical parameter extraction algorithm of a quasiseparable matrix is efficient, requiring only O(nlog(n)) operations, and is proven backward stable. T...
متن کاملRobust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices
Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...
متن کاملParallel Randomized and Matrix-Free Direct Solvers for Large Structured Dense Linear Systems
We design efficient and distributed-memory parallel randomized direct solvers for large structured dense linear systems, including a fully matrix-free version based on matrix-vector multiplications and a partially matrix-free one. The dense coefficient matrix A has an off-diagonal low-rank structure, as often encountered in practical applications such as Toeplitz systems and discretized integra...
متن کاملNew fast divide-and-conquer algorithms for the symmetric tridiagonal eigenvalue problem
In this paper, two accelerated divide-and-conquer algorithms are proposed for the symmetric tridiagonal eigenvalue problem, which cost O(Nr) flops in the worst case, where N is the dimension of the matrix and r is a modest number depending on the distribution of eigenvalues. Both of these algorithms use hierarchically semiseparable (HSS) matrices to approximate some intermediate eigenvector mat...
متن کاملFast Structured Matrix Computations: Tensor Rank and Cohn-Umans Method
We discuss a generalization of the Cohn–Umans method, a potent technique developed for studying the bilinear complexity of matrix multiplication by embedding matrices into an appropriate group algebra. We investigate how the Cohn–Umans method may be used for bilinear operations other than matrix multiplication, with algebras other than group algebras, and we relate it to Strassen’s tensor rank ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 37 شماره
صفحات -
تاریخ انتشار 2016